Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.16.22275151

ABSTRACT

Multiple lineages of the SARS-CoV-2 Omicron variant (B.1.1.529) have emerged, and BA.1 and BA.2 have demonstrated substantial escape from neutralizing antibodies (NAbs). BA.2.12.1 has now become dominant in the United States, and BA.4 and BA.5 have become dominant in South Africa. Our data show that BA.2.12.1 and BA.4/BA.5 substantially escape NAbs induced by both vaccination and infection. Moreover, BA.4/BA.5 NAb titers, and to lesser extent BA.2.12.1 NAb titers, were lower than BA.1 and BA.2 NAb titers, suggesting that the SARS-CoV-2 Omicron variant has continued to evolve with increasing neutralization escape. These findings have important public health implications and provide immunologic context for the current surges with BA.2.12.1 and BA.4/BA.5 in populations with high rates of vaccination and BA.1/BA.2 infection.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.06.22270533

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) has three major lineages BA.1, BA.2, and BA.3. BA.1 rapidly became dominant and has demonstrated substantial escape from neutralizing antibodies (NAbs) induced by vaccination. BA.2 has recently increased in frequency in multiple regions of the world, suggesting that BA.2 has a selective advantage over BA.1. BA.1 and BA.2 share multiple common mutations, but both also have unique mutations. The ability of BA.2 to evade NAbs induced by vaccination or infection has not yet been reported. We evaluated WA1/2020, Omicron BA.1, and BA.2 NAbs in 24 individuals who were vaccinated and boosted with the mRNA BNT162b2 vaccine5 and in 8 individuals who were infected with SARS-CoV-2.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.12.464150

ABSTRACT

Infections from the SARS-CoV-2 virus have killed over 4.6 million people since it began spreading through human populations in late 2019. In order to develop a therapeutic or prophylactic antibody to help mitigate the effects of the pandemic, a human monoclonal antibody (mAb) that binds to the SARS-CoV-2 spike protein was isolated from a convalescent patient following recovery from COVID-19 disease. This mAb, designated AUG-3387, demonstrates a high affinity for the spike protein of the original viral strains and all variants tested to date. In vitro pseudovirus neutralization and SARS-CoV-2 neutralization activity has been demonstrated in vitro. In addition, a dry powder formulation has been prepared using a Thin-Film Freezing (TFF) process that exhibited a fine particle fraction (FPF) of 50.95 ± 7.69% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 3.74 ± 0.73 µm and 2.73 ± 0.20, respectively. The dry powder is suitable for delivery directly to the lungs of infected patients using a dry powder inhaler device. Importantly, AUG-3387, administered as a liquid by intraperitoneal injection or the dry powder formulation delivered intratracheally into Syrian hamsters 24 hours after intranasal SARS-CoV-2 infection, demonstrated a dose-dependent reduction in the lung viral load of the virus. These data suggest that AUG-3387 formulated as a dry powder demonstrates potential to treat COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL